176 research outputs found

    A migrating epithelial monolayer flows like a Maxwell viscoelastic liquid

    Full text link
    We perform a bidimensional Stokes experiment in an active cellular material: an autonomously migrating monolayer of Madin-Darby Canine Kidney (MDCK) epithelial cells flows around a circular obstacle within a long and narrow channel, involving an interplay between cell shape changes and neighbour rearrangements. Based on image analysis of tissue flow and coarse-grained cell anisotropy, we determine the tissue strain rate, cell deformation and rearrangement rate fields, which are spatially heterogeneous. We find that the cell deformation and rearrangement rate fields correlate strongly, which is compatible with a Maxwell viscoelastic liquid behaviour (and not with a Kelvin-Voigt viscoelastic solid behaviour). The value of the associated relaxation time is measured as τ=70±15\tau = 70 \pm 15~min, is observed to be independent of obstacle size and division rate, and is increased by inhibiting myosin activity. In this experiment, the monolayer behaves as a flowing material with a Weissenberg number close to one which shows that both elastic and viscous effects can have comparable contributions in the process of collective cell migration.Comment: 17 pages, 15 figure

    Cell division: a source of active stress in cellular monolayers

    Full text link
    We introduce the notion of cell division-induced activity and show that the cell division generates extensile forces and drives dynamical patterns in cell assemblies. Extending the hydrodynamic models of lyotropic active nematics we describe turbulent-like velocity fields that are generated by the cell division in a confluent monolayer of cells. We show that the experimentally measured flow field of dividing Madin-Darby Canine Kidney (MDCK) cells is reproduced by our modeling approach. Division-induced activity acts together with intrinsic activity of the cells in extensile and contractile cell assemblies to change the flow and director patterns and the density of topological defects. Finally we model the evolution of the boundary of a cellular colony and compare the fingering instabilities induced by cell division to experimental observations on the expansion of MDCK cell cultures.Comment: Accepted Manuscript for Celebrating Soft Matter's 10th Anniversar

    Polymers in linear shear flow: a numerical study

    Full text link
    We study the dynamics of a single polymer subject to thermal fluctuations in a linear shear flow. The polymer is modeled as a finitely extendable nonlinear elastic FENE dumbbell. Both orientation and elongation dynamics are investigated numerically as a function of the shear strength, by means of a new efficient integration algorithm. The results are in agreement with recent experiments.Comment: 7 pages, see also the preceding paper (http://arxiv.org/nlin.CD/0503028

    Tension Dynamics and Linear Viscoelastic Behavior of a Single Semiflexible Polymer Chain

    Full text link
    We study the dynamical response of a single semiflexible polymer chain based on the theory developed by Hallatschek et al. for the wormlike-chain model. The linear viscoelastic response under oscillatory forces acting at the two chain ends is derived analytically as a function of the oscillation frequency . We shall show that the real part of the complex compliance in the low frequency limit is consistent with the static result of Marko and Siggia whereas the imaginary part exhibits the power-law dependence +1/2. On the other hand, these compliances decrease as the power law -7/8 for the high frequency limit. These are different from those of the Rouse dynamics. A scaling argument is developed to understand these novel results.Comment: 23 pages, 6 figure

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt

    Dynamic Mechanisms of Cell Rigidity Sensing: Insights from a Computational Model of Actomyosin Networks

    Get PDF
    Cells modulate themselves in response to the surrounding environment like substrate elasticity, exhibiting structural reorganization driven by the contractility of cytoskeleton. The cytoskeleton is the scaffolding structure of eukaryotic cells, playing a central role in many mechanical and biological functions. It is composed of a network of actins, actin cross-linking proteins (ACPs), and molecular motors. The motors generate contractile forces by sliding couples of actin filaments in a polar fashion, and the contractile response of the cytoskeleton network is known to be modulated also by external stimuli, such as substrate stiffness. This implies an important role of actomyosin contractility in the cell mechano-sensing. However, how cells sense matrix stiffness via the contractility remains an open question. Here, we present a 3-D Brownian dynamics computational model of a cross-linked actin network including the dynamics of molecular motors and ACPs. The mechano-sensing properties of this active network are investigated by evaluating contraction and stress in response to different substrate stiffness. Results demonstrate two mechanisms that act to limit internal stress: (i) In stiff substrates, motors walk until they exert their maximum force, leading to a plateau stress that is independent of substrate stiffness, whereas (ii) in soft substrates, motors walk until they become blocked by other motors or ACPs, leading to submaximal stress levels. Therefore, this study provides new insights into the role of molecular motors in the contraction and rigidity sensing of cells

    Particular distribution and expression pattern of endoglin (CD105) in the liver of patients with hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endoglin (CD105) has been considered a prognostic marker for hepatocellular carcinoma (HCC), and widely used as an appropriate targeting for antiangenesis therapy in some cancers. Our aim was to evaluate the distribution and expression of CD105 in the liver of patients with HCC, and to discuss whether CD105 may be used as an appropriate targeting for antiangenesis therapy in HCC.</p> <p>Methods</p> <p>Three parts of liver tissues from each of 64 patients with HCC were collected: tumor tissues (TT), adjacent non-tumor (AT) liver tissues within 2 cm, and tumor free tissues (TF) 5 cm far from the tumor edge. Liver samples from 8 patients without liver diseases served as healthy controls (HC). The distribution and expression of CD105 in tissues were evaluated by immunohistochemistry, Western blotting analysis, and real-time PCR. HIF-1alpha and VEGF<sub>165 </sub>protein levels in tissues were analyzed by Immunohistochemistry and Western blotting analysis or ELISA.</p> <p>Results</p> <p>CD105 was positively stained mostly in a subset of microvessels 'endothelial sprouts' in TT of all patients while CD105 showed diffuse positive staining, predominantly on hepatic sinus endothelial cells in the surrounding of draining veins in TF and AT. The mean score of MVD-CD105 (mean ± SD/0.74 mm<sup>2</sup>) was 19.00 ± 9.08 in HC, 153.12 ± 53.26 in TF, 191.12 ± 59.17 in AT, and 85.43 ± 44.71 in TT, respectively. Using a paired <it>t </it>test, the expression of CD105 in AT and TF was higher than in TT at protein (MVD, <it>p </it>= 0.012 and <it>p </it>= 0.007, respectively) and mRNA levels (<it>p </it>< 0.001 and <it>p </it>= 0.009, respectively). Moreover, distribution and expression of CD105 protein were consistent with those of HIF-1alpha and VEGF<sub>165 </sub>protein in liver of patients with HCC. The level of <it>CD105 </it>mRNA correlated with VEGF<sub>165 </sub>level in TF (r = 0.790, <it>p </it>= 0.002), AT (r = 0.723, <it>p </it>< 0.001), and TT (r = 0.473, <it>p </it>= 0.048), respectively.</p> <p>Conclusion</p> <p>It is demonstrated that CD105 was not only present in neovessels in tumor tissues, but also more abundant in hepatic sinus endothelium in non-tumor tissues with cirrhosis. Therefore, CD105 may not be an appropriate targeting for antiangenesis therapy in HCC, especially with cirrhosis.</p
    • …
    corecore